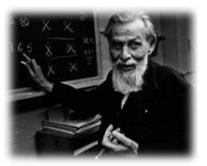
Лекция №11 ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ


модель инс

Разработчики теории – У. Маккаллок и У. Питтс

Главные результаты нейронных сетей (1943 г.) сводились к следующему.

- 1. Модель нейрона в виде простейшего процессорного элемента, который вычисляет значение некоторой функции.
- 2. Конструкция нейронной сети для выполнения логических и арифметических операций.
- 3. Высказывалось предположение, что нейронная сеть способна обучаться, распознавать образы и обобщать полученную информацию.

Warren McCulloch

Walter Pitts

ПЕРСЕПТРОН

Фрэнк Разенблатт (1958 г.) ввел понятие **персептрона** – модели нейронных сетей.

Разенблатт ввел возможность модификации межнейронных связей. Это сделало нейронную сеть обучаемой.

Первые персептроны могли распознавать буквы алфавита.

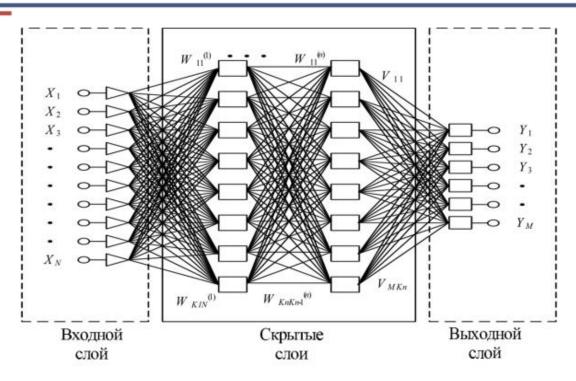
АЛГОРИТМ ОБУЧЕНИЯ ПЕРСЕПТРОНА

1) Системе предъявляется эталонный образ

2) Если результат распознавания совпадает с заданным, то весовые коэффициенты не изменяются

3) Если нейронная сеть неправильно распознает результат, то весовым коэффициентам дается приращение в сторону повышения качества распознавания

МОДЕЛ ИСКУССТВЕННОГО НЕЙРОНА



Персептрон имеет ограниченные возможности, поскольку не всегда существует такая комбинация весовых коэффициентов, при которой заданное множество образов будет распознаваться правильно.

Причина в том, что однослойный персептрон реализует линейную разделенную поверхность пространства эталона, вследствие чего может происходить неверное распознавание.

многослойные сети

Многослойный персептрон

МНОГОСЛОЙНЫЙ ПЕРСЕПТРОН

Устанавливаются связи только между нейронами соседних слоев.

Каждый слой соединен модифицированной связью с любым нейроном соседних слоев.

Между нейронами одного слоя связей нет. Каждый нейрон может посылать сигнал только в вышестоящий слой и принимать выходной сигнал только из нижестоящего слоя.

Выходные сигналы подаются на нижний слой, а выходной вектор определяется путем последовательных вычислений уравнений активных элементов каждого слоя снизу вверх с использованием уже известных значений активных элементов предшествующих слоев.

МОДЕЛЬ ХОПФИЛДА

Данная модель основана на простом предположении, которое заключается в том, если два нейрона возбуждены вместе, то сила связи возрастает, если порознь, то уменьшается связь.

Сеть Хопфилда строится с учетом следующих условий:

- 1. все элементы связаны со всеми;
- 2. прямые и обратные связи симметричны;
- 3. диагональные элементы матрицы связей равны 0, т.е. исключаются обратные связи с выходом на входе одного нейрона.

Сеть Хопфилда может выполнять функции ассоциативной памяти, обеспечивая сходимость к тому образу, в область которого попадает начальный образец.

САМООРГАНИЗУЮЩИЕСЯ СЕТИ КОХОНЕНА

Идея сетей с самоорганизацией на основании конкуренции между нейронами базируется на применении специальных алгоритмов самообучения ИНС.

Сети Кохонена обычно содержат один выходной слой обработки элементов с пороговой передаточной функцией.

Число нейронов в выходном слое соответствует комплексному распознаванию классов.

Настройка параметров межнейронных соединений проводится автоматически на основе меры близости векторов — весовых коэффициентов настраиваемых связей к вектору входного сигнала в евклидовом пространстве.

СПОСОБЫ РЕАЛИЗАЦИИ НЕЙРОННЫХ СЕТЕЙ

Неиронные сети обычно реализуются двумя способами:	
🗆 программно;	

🔲 аппаратно.

Вариантами аппаратной реализации являются нейрокомпьютеры, нейроплаты и нейронные БИС специального назначения.

Программная реализация предполагает разработку и применение нейропакетов.